
RoleCast
Finding Missing Security Checks

When You Do Not Know What Checks Are
Sooel Son, Kathryn S. McKinley,

Vitaly Shmatikov

Mateusz Galimski
May 21, 2012

Table of contents

● introduction
● security logic in web applications
● analysis overview
● experimental evaluation
● conclusion

Introduction

● Web applications interact with untrusted

users and receive untrusted network inputs
● security checks prior to executing security-

sensitive events
● objective is to develop a robust method for

finding missing security checks in web
applications

Introduction

● easier if the programmer formally specifies

the application’s security policy, e.g., via
annotations or data-flow assertions

● the overwhelming majority of Web

applications today are not accompanied by
specifications of their intended authorization
policies

Introduction, previous techniques

● syntactic definition of checks as inputs
● must know a priori the syntactic form of

every check
● it does not work for finding missing

authorization checks in applications because
there is no standard set of checks used by
all applications

● must infer the set of role-specific checks
from the application’s code

Introduction, RoleCast

● automatically infers:

○ the set of user roles
○ the security checks specific to each role

● finds missing security checks, does not rely
on programmer annotations or an external
specification of intended authorization policy

● does not assume a priori which methods or
variables implement security checks

Introduction, RoleCast

● exploits the idea that there is a small number

of sources for authorization information (e.g.,
session state, cookies, results of reading the
user database)

● all authorization checks involve a conditional
branch on variables holding authorization
information

● each page is typically implemented by one
or more program files

Introduction, RoleCast

● this approach infers the Web application’s

authorization logic under the assumption that
the application follows common code design
patterns, it may suffer from both false
positives and false negatives

● nevertheless, it works well

Introduction, other approaches (1)

● taint checks, taint analysis

○ cross-site scripting
○ SQL injections
○ if (user == ADMIN) {DB query(‘‘DROP TABLE

AllUsers’’)}
○ data-flow not control-flow

● explicit security policy
○ not useful enough

Introduction, other approaches (2)

● dynamic analysis

○ there is no guarantee that the set of checks
observed during test executions is comprehensive,
dynamic analysis may miss checks

● dynamic and static analyses are complementary

Security Logic in Web Applications

● focus on server-side Web applications,

which are typically implemented in PHP and
JSP

● client-side applications, which are typically

implemented in JavaScript are outside the
scope

Security Logic in Web Applications

● PHP programs use a flat file structure with a

designated main entry point

● a network user can directly invoke any PHP

file by providing its name as part of the URL

● if the file contains executable code outside of

function definitions, this code will be
executed

Security Logic in Web Applications

● JSP (Java Server Pages) is a Java

technology for dynamically generating HTML
pages

● mixes Java statements with XML and HTML
tags

● build on Java, more object-oriented features
than PHP

● executes on Java Virtual Machine

Security Logic in Web Applications

● the languages are quite different

● to demonstrate that our approach we provide

a generic method for analyzing security of
Web applications regardless of the
implementation language, we apply our
analysis to both JSP and PHP applications

Security Logic in Web Applications

● translating scripting languages into Java is becoming a
popular approach because it helps improve
performance by taking advantage of mature JVM
compilers

● exploit this practice by:

○ converting Web applications into Java class files
○ extending the Soot static analysis framework for

Java programs with new algorithms for static
security analysis of Web applications

Security Logic in Web Applications

● JSP is translated to Java class files by
Tomcat Web Server
○ produces well-formed Java

● PHP is translated by Quercus compiler

○ PHP is a dynamically typed language
○ process of translation obscures the call graph
○ security analysis requires a precise call graph, we

must reverse-engineer this translation

Security Logic in Web Applications

● security-sensitive events:

○ all operations that may affect the integrity of
database queries that insert, delete, or update the
database

○ statically determining the type of a SQL query in a
given statement requires program analysis.
RoleCast conservatively marks all statically
unresolved SQL queries as sensitive

○ SELECT and SHOW queries are deliberately not
included

Security Logic in Web Applications, examples (1)

Security Logic in Web Applications, examples (2)

Security Logic in Web Applications, examples (3)

Security Logic in Web Applications, observations

● Important observations:

○ when a security check fails, the program quickly
terminates or restarts

○ every path leading to a security-sensitive event from

any program entry point must contain a security
check

○ distinct application-specific roles usually involve

different program files

Security Logic in Web Applications, file structure

example vulnerability (1)

example vulnerability (2)

example vulnerability (3)

Analysis overview

● RoleCast has four analysis phases:
○ Phase I identifies critical variables that control

whether security-sensitive events execute or not
○ Phase II partitions contexts into groups that

approximate application-specific user roles
○ Phase III computes for each role the subset of

critical variables responsible for enforcing the
security logic of that role

○ Phase IV discovers missing security checks by
verifying whether the relevant variables are checked
consistently within the role

Architecture

Architecture

Experimental Evaluation

● all experiments in this section were performed on a

Pentium 3GHz with 2G of RAM

Experimental Evaluation

Experimental Evaluation

Experimental Evaluation

Conclusion

● When evaluated on a representative sample of open-

source, relatively large PHP and JSP applications,
RoleCast discovered 13 previously unreported
vulnerabilities with only 3 false positives

Vulnerabilities: DNscript (1)

Vulnerabilities: DNscript (2)

Vulnerabilities: phpnews 1.3.0 (1)

Vulnerabilities: phpnews 1.3.0 (2)

Vulnerabilities: phpnews 1.3.0 (3)

RoleCast

